Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Ther Adv Neurol Disord ; 16: 17562864231211077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084102

RESUMO

Background: Cladribine is a highly effective immunotherapy that is applied in two short-term courses over 2 years and reduces relapse rate and disease progression in patients with relapsing multiple sclerosis (MS). Despite the short treatment period, cladribine has a long-lasting effect on disease activity even after recovery of lymphocyte counts, suggesting a yet undefined long-term immune modulating effect. Objectives: Our aim was to provide a more profound understanding of the detailed effects of cladribine, also with regard to the patients' therapy response. Design: We performed an open-labeled, explorative, prospective, single-arm study, in which we examined the detailed lymphocyte subset development of MS patients who received cladribine treatment over 2 years. Methods: We performed in-depth profiling of the effects of cladribine on peripheral blood lymphocytes by flow cytometry, bulk RNA sequencing of sorted CD4+ T cells, CD8+ T cells, and CD19+ B cells as well as single-cell RNA sequencing of peripheral blood mononuclear cells in a total of 23 MS patients before and at different time points up to 24 months after cladribine treatment. Data were correlated with clinical and cranial magnetic resonance imaging (MRI) disease activity. Results: Flow cytometry revealed a predominant and sustained reduction of memory B cells compared to other B cell subsets after cladribine treatment, whereas T cell subsets were slightly reduced in a more uniform pattern. The overall transcriptional profile of total blood B cells exhibited reduced expression of proinflammatory and T cell activating genes, while single-cell transcriptomics revealed that gene expression within each B cell cluster did not change over time. Stable patients displayed stronger reductions of selected memory B cell clusters as compared to patients with clinical or cerebral MRI disease activity. Conclusion: We describe a pronounced and sustained effect of cladribine on the memory B cell compartment, and the resulting change in B cell subset composition causes a significant alteration of B cell transcriptional profiles resulting in reduced proinflammatory and T cell activating capacities. The extent of reduction in selected memory B cell clusters by cladribine may predict treatment response.

2.
Gut ; 73(1): 92-104, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37595983

RESUMO

OBJECTIVE: Wheat has become a main staple globally. We studied the effect of defined pro-inflammatory dietary proteins, wheat amylase trypsin inhibitors (ATI), activating intestinal myeloid cells via toll-like receptor 4, in experimental autoimmune encephalitis (EAE), a model of multiple sclerosis (MS). DESIGN: EAE was induced in C57BL/6J mice on standardised dietary regimes with defined content of gluten/ATI. Mice received a gluten and ATI-free diet with defined carbohydrate and protein (casein/zein) content, supplemented with: (a) 25% of gluten and 0.75% ATI; (b) 25% gluten and 0.19% ATI or (c) 1.5% purified ATI. The effect of dietary ATI on clinical EAE severity, on intestinal, mesenteric lymph node, splenic and central nervous system (CNS) subsets of myeloid cells and lymphocytes was analysed. Activation of peripheral blood mononuclear cells from patients with MS and healthy controls was compared. RESULTS: Dietary ATI dose-dependently caused significantly higher EAE clinical scores compared with mice on other dietary regimes, including on gluten alone. This was mediated by increased numbers and activation of pro-inflammatory intestinal, lymph node, splenic and CNS myeloid cells and of CNS-infiltrating encephalitogenic T-lymphocytes. Expectedly, ATI activated peripheral blood monocytes from both patients with MS and healthy controls. CONCLUSIONS: Dietary wheat ATI activate murine and human myeloid cells. The amount of ATI present in an average human wheat-based diet caused mild intestinal inflammation, which was propagated to extraintestinal sites, leading to exacerbation of CNS inflammation and worsening of clinical symptoms in EAE. These results support the importance of the gut-brain axis in inflammatory CNS disease.


Assuntos
Esclerose Múltipla , Humanos , Animais , Camundongos , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/química , Triticum/química , Amilases , Leucócitos Mononucleares , Camundongos Endogâmicos C57BL , Inflamação , Sistema Nervoso Central , Glutens , Dieta
3.
Proc Natl Acad Sci U S A ; 120(1): e2209944120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574650

RESUMO

After natalizumab (NAT) cessation, some multiple sclerosis (MS) patients experience a severe disease rebound. The rebound pathophysiology is still unclear; however, it has been linked to interleukin-17-producing T-helper (Th17) cells. We demonstrate that during NAT treatment, MCAM+CCR6+Th17 cells gradually acquire a pathogenic profile, including proinflammatory cytokine production, pathogenic transcriptional signatures, brain endothelial barrier impairment, and oligodendrocyte damage via induction of apoptotic pathways. This is accompanied by an increase in Th17 cell frequencies in the cerebrospinal fluid of NAT-treated patients. Notably, Th17 cells derived from NAT-treated patients, who later developed a disease rebound upon treatment cessation, displayed a distinct transcriptional pathogenicity profile associated with altered migratory properties. Accordingly, increased brain infiltration of patient Th17 cells was illustrated in a humanized mouse model and brain histology from a rebound patient. Therefore, peripheral blood-accumulated MCAM+CCR6+Th17 cells might be involved in rebound pathophysiology, and monitoring of changes in Th17 cell pathogenicity in patients before/during NAT treatment cessation might enable rebound risk assessment in the future.


Assuntos
Esclerose Múltipla , Células Th17 , Animais , Camundongos , Natalizumab/farmacologia , Natalizumab/uso terapêutico , Virulência , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/líquido cefalorraquidiano , Encéfalo
5.
J Exp Med ; 219(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36048016

RESUMO

Epstein-Barr virus (EBV) infection precedes multiple sclerosis (MS) pathology and cross-reactive antibodies might link EBV infection to CNS autoimmunity. As an altered anti-EBV T cell reaction was suggested in MS, we queried peripheral blood T cell receptor ß chain (TCRß) repertoires of 1,395 MS patients, 887 controls, and 35 monozygotic, MS-discordant twin pairs for multimer-confirmed, viral antigen-specific TCRß sequences. We detected more MHC-I-restricted EBV-specific TCRß sequences in MS patients. Differences in genetics or upbringing could be excluded by validation in monozygotic twin pairs discordant for MS. Anti-VLA-4 treatment amplified this observation, while interferon ß- or anti-CD20 treatment did not modulate EBV-specific T cell occurrence. In healthy individuals, EBV-specific CD8+ T cells were of an effector-memory phenotype in peripheral blood and cerebrospinal fluid. In MS patients, cerebrospinal fluid also contained EBV-specific central-memory CD8+ T cells, suggesting recent priming. Therefore, MS is not only preceded by EBV infection, but also associated with broader EBV-specific TCR repertoires, consistent with an ongoing anti-EBV immune reaction in MS.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Linfócitos T CD8-Positivos , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4 , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/genética
6.
Brain ; 144(10): 3126-3141, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34849598

RESUMO

Dimethyl fumarate, an approved treatment for relapsing-remitting multiple sclerosis, exerts pleiotropic effects on immune cells as well as CNS resident cells. Here, we show that dimethyl fumarate exerts a profound alteration of the metabolic profile of human CD4+ as well as CD8+ T cells and restricts their antioxidative capacities by decreasing intracellular levels of the reactive oxygen species scavenger glutathione. This causes an increase in mitochondrial reactive oxygen species levels accompanied by an enhanced mitochondrial stress response, ultimately leading to impaired mitochondrial function. Enhanced mitochondrial reactive oxygen species levels not only result in enhanced T-cell apoptosis in vitro as well as in dimethyl fumarate-treated patients, but are key for the well-known immunomodulatory effects of dimethyl fumarate both in vitro and in an animal model of multiple sclerosis, i.e. experimental autoimmune encephalomyelitis. Indeed, dimethyl fumarate immune-modulatory effects on T cells were completely abrogated by pharmacological interference of mitochondrial reactive oxygen species production. These data shed new light on dimethyl fumarate as bona fide immune-metabolic drug that targets the intracellular stress response in activated T cells, thereby restricting mitochondrial function and energetic capacity, providing novel insight into the role of oxidative stress in modulating cellular immune responses and T cell-mediated autoimmunity.


Assuntos
Antioxidantes/farmacologia , Autoimunidade/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Fumarato de Dimetilo/farmacologia , Imunossupressores/farmacologia , Adulto , Animais , Antioxidantes/uso terapêutico , Autoimunidade/fisiologia , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Estudos de Coortes , Fumarato de Dimetilo/uso terapêutico , Feminino , Humanos , Imunossupressores/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/metabolismo , Adulto Jovem
7.
Brain ; 144(4): 1152-1166, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33899089

RESUMO

A close interaction between gut immune responses and distant organ-specific autoimmunity including the CNS in multiple sclerosis has been established in recent years. This so-called gut-CNS axis can be shaped by dietary factors, either directly or via indirect modulation of the gut microbiome and its metabolites. Here, we report that dietary supplementation with conjugated linoleic acid, a mixture of linoleic acid isomers, ameliorates CNS autoimmunity in a spontaneous mouse model of multiple sclerosis, accompanied by an attenuation of intestinal barrier dysfunction and inflammation as well as an increase in intestinal myeloid-derived suppressor-like cells. Protective effects of dietary supplementation with conjugated linoleic acid were not abrogated upon microbiota eradication, indicating that the microbiome is dispensable for these conjugated linoleic acid-mediated effects. Instead, we observed a range of direct anti-inflammatory effects of conjugated linoleic acid on murine myeloid cells including an enhanced IL10 production and the capacity to suppress T-cell proliferation. Finally, in a human pilot study in patients with multiple sclerosis (n = 15, under first-line disease-modifying treatment), dietary conjugated linoleic acid-supplementation for 6 months significantly enhanced the anti-inflammatory profiles as well as functional signatures of circulating myeloid cells. Together, our results identify conjugated linoleic acid as a potent modulator of the gut-CNS axis by targeting myeloid cells in the intestine, which in turn control encephalitogenic T-cell responses.


Assuntos
Suplementos Nutricionais , Enterite/patologia , Ácidos Linoleicos Conjugados/farmacologia , Monócitos/imunologia , Esclerose Múltipla Recidivante-Remitente/patologia , Adulto , Animais , Autoimunidade/efeitos dos fármacos , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Enterite/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Esclerose Múltipla Recidivante-Remitente/imunologia , Projetos Piloto , Estudo de Prova de Conceito
8.
Mult Scler ; 27(10): 1491-1496, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33150829

RESUMO

BACKGROUND: Progressive multifocal leukoencephalopathy (PML) can in rare cases occur in natalizumab-treated patients with high serum anti-JCPyV antibodies, hypothetically due to excessive blockade of immune cell migration. OBJECTIVE: Immune cell recruitment to the central nervous system (CNS) was assessed in relapsing-remitting multiple sclerosis (RRMS) patients stratified by low versus high anti-JCPyV antibody titers as indicator for PML risk. METHODS: Cerebrospinal fluid (CSF) cell counts of 145 RRMS patients were quantified by flow cytometry. Generalized linear models were employed to assess influence of age, sex, disease duration, Expanded Disability Status Scale (EDSS), clinical/radiological activity, current steroid or natalizumab treatment, as well as anti-JCPyV serology on CSF cell subset counts. RESULTS: While clinical/radiological activity was associated with increased CD4, natural killer (NK), B and plasma cell counts, natalizumab therapy reduced all subpopulations except monocytes. With and without natalizumab therapy, patients with high anti-JCPyV serum titers presented with increased CSF T-cell counts compared to patients with low anti-JCPyV serum titers. In contrast, PML patients assessed before (n = 2) or at diagnosis (n = 5) presented with comparably low CD8 and B-cell counts, which increased after plasma exchange (n = 4). CONCLUSION: High anti-JCPyV indices, which could be indicative of increased viral activity, are associated with elevated immune cell recruitment to the CNS. Its excessive impairment in conjunction with viral activity could predispose for PML development.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Esclerose Múltipla Recidivante-Remitente , Contagem de Células , Humanos , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Natalizumab/uso terapêutico
9.
Proc Natl Acad Sci U S A ; 117(35): 21546-21556, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817525

RESUMO

The tremendous heterogeneity of the human population presents a major obstacle in understanding how autoimmune diseases like multiple sclerosis (MS) contribute to variations in human peripheral immune signatures. To minimize heterogeneity, we made use of a unique cohort of 43 monozygotic twin pairs clinically discordant for MS and searched for disease-related peripheral immune signatures in a systems biology approach covering a broad range of adaptive and innate immune populations on the protein level. Despite disease discordance, the immune signatures of MS-affected and unaffected cotwins were remarkably similar. Twinship alone contributed 56% of the immune variation, whereas MS explained 1 to 2% of the immune variance. Notably, distinct traits in CD4+ effector T cell subsets emerged when we focused on a subgroup of twins with signs of subclinical, prodromal MS in the clinically healthy cotwin. Some of these early-disease immune traits were confirmed in a second independent cohort of untreated early relapsing-remitting MS patients. Early involvement of effector T cell subsets thus points to a key role of T cells in MS disease initiation.


Assuntos
Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Adulto , Idoso , Biomarcadores/sangue , Estudos de Coortes , Metilação de DNA , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Sintomas Prodrômicos , Gêmeos Monozigóticos/genética
10.
Commun Biol ; 2: 373, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31633064

RESUMO

Aggressive behavior in our modern, civilized society is often counterproductive and destructive. Identifying specific proteins involved in the disease can serve as therapeutic targets for treating aggression. Here, we found that overexpression of RGS2 in explicitly serotonergic neurons augments male aggression in control mice and rescues male aggression in Rgs2-/- mice, while anxiety is not affected. The aggressive behavior is directly correlated to the immediate early gene c-fos induction in the dorsal raphe nuclei and ventrolateral part of the ventromedial nucleus hypothalamus, to an increase in spontaneous firing in serotonergic neurons and to a reduction in the modulatory action of Gi/o and Gq/11 coupled 5HT and adrenergic receptors in serotonergic neurons of Rgs2-expressing mice. Collectively, these findings specifically identify that RGS2 expression in serotonergic neurons is sufficient to drive male aggression in mice and as a potential therapeutic target for treating aggression.


Assuntos
Agressão/fisiologia , Proteínas RGS/metabolismo , Neurônios Serotoninérgicos/metabolismo , Potenciais de Ação , Animais , Ansiedade/metabolismo , Cálcio/metabolismo , Células Cultivadas , Depressão/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas RGS/genética , RNA Mensageiro/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo
11.
Brain ; 142(11): 3411-3427, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31563951

RESUMO

Although the CNS is immune privileged, continuous search for pathogens and tumours by immune cells within the CNS is indispensable. Thus, distinct immune-cell populations also cross the blood-brain barrier independently of inflammation/under homeostatic conditions. It was previously shown that effector memory T cells populate healthy CNS parenchyma in humans and, independently, that CCR5-expressing lymphocytes as well as CCR5 ligands are enriched in the CNS of patients with multiple sclerosis. Apart from the recently described CD8+ CNS tissue-resident memory T cells, we identified a population of CD4+CCR5high effector memory cells as brain parenchyma-surveilling cells. These cells used their high levels of VLA-4 to arrest on scattered VCAM1, their open-conformation LFA-1 to crawl preferentially against the flow in search for sites permissive for extravasation, and their stored granzyme K (GZMK) to induce local ICAM1 aggregation and perform trans-, rather than paracellular diapedesis through unstimulated primary brain microvascular endothelial cells. This study included peripheral blood mononuclear cell samples from 175 healthy donors, 29 patients infected with HIV, with neurological symptoms in terms of cognitive impairment, 73 patients with relapsing-remitting multiple sclerosis in remission, either 1-4 weeks before (n = 29), or 18-60 months after the initiation of natalizumab therapy (n = 44), as well as white matter brain tissue of three patients suffering from epilepsy. We here provide ex vivo evidence that CCR5highGZMK+CD4+ effector memory T cells are involved in CNS immune surveillance during homeostasis, but could also play a role in CNS pathology. Among CD4+ T cells, this subset was found to dominate the CNS of patients without neurological inflammation ex vivo. The reduction in peripheral blood of HIV-positive patients with neurological symptoms correlated to their CD4 count as a measure of disease progression. Their peripheral enrichment in multiple sclerosis patients and specific peripheral entrapment through the CNS infiltration inhibiting drug natalizumab additionally suggests a contribution to CNS autoimmune pathology. Our transcriptome analysis revealed a migratory phenotype sharing many features with tissue-resident memory and Th17.1 cells, most notably the transcription factor eomesodermin. Knowledge on this cell subset should enable future studies to find ways to strengthen the host defence against CNS-resident pathogens and brain tumours or to prevent CNS autoimmunity.


Assuntos
Granzimas/genética , Vigilância Imunológica/imunologia , Receptores CCR5/metabolismo , Migração Transendotelial e Transepitelial/genética , Migração Transendotelial e Transepitelial/imunologia , Complexo AIDS Demência/genética , Complexo AIDS Demência/psicologia , Adulto , Linfócitos T CD4-Positivos/imunologia , Células Endoteliais/imunologia , Células Endoteliais/patologia , Epilepsia/genética , Epilepsia/psicologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/psicologia , Molécula 1 de Adesão de Célula Vascular/genética
12.
Sci Transl Med ; 11(490)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043571

RESUMO

Interference with immune cell proliferation represents a successful treatment strategy in T cell-mediated autoimmune diseases such as rheumatoid arthritis and multiple sclerosis (MS). One prominent example is pharmacological inhibition of dihydroorotate dehydrogenase (DHODH), which mediates de novo pyrimidine synthesis in actively proliferating T and B lymphocytes. Within the TERIDYNAMIC clinical study, we observed that the DHODH inhibitor teriflunomide caused selective changes in T cell subset composition and T cell receptor repertoire diversity in patients with relapsing-remitting MS (RRMS). In a preclinical antigen-specific setup, DHODH inhibition preferentially suppressed the proliferation of high-affinity T cells. Mechanistically, DHODH inhibition interferes with oxidative phosphorylation (OXPHOS) and aerobic glycolysis in activated T cells via functional inhibition of complex III of the respiratory chain. The affinity-dependent effects of DHODH inhibition were closely linked to differences in T cell metabolism. High-affinity T cells preferentially use OXPHOS during early activation, which explains their increased susceptibility toward DHODH inhibition. In a mouse model of MS, DHODH inhibitory treatment resulted in preferential inhibition of high-affinity autoreactive T cell clones. Compared to T cells from healthy controls, T cells from patients with RRMS exhibited increased OXPHOS and glycolysis, which were reduced with teriflunomide treatment. Together, these data point to a mechanism of action where DHODH inhibition corrects metabolic disturbances in T cells, which primarily affects profoundly metabolically active high-affinity T cell clones. Hence, DHODH inhibition may promote recovery of an altered T cell receptor repertoire in autoimmunity.


Assuntos
Crotonatos/uso terapêutico , Mitocôndrias/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Linfócitos T/imunologia , Toluidinas/uso terapêutico , Aerobiose/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Crotonatos/farmacologia , Di-Hidro-Orotato Desidrogenase , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Hidroxibutiratos , Ativação Linfocitária/efeitos dos fármacos , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/imunologia , Mitocôndrias/efeitos dos fármacos , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Nitrilas , Fosforilação Oxidativa/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos , Toluidinas/farmacologia
13.
Front Immunol ; 9: 1560, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050529

RESUMO

Leukocyte sequestration is an established therapeutic concept in multiple sclerosis (MS) as represented by the trafficking drugs natalizumab (NAT) and fingolimod (FTY). However, the precise consequences of targeting immune cell trafficking for immunoregulatory network functions are only incompletely understood. In the present study, we performed an in-depth longitudinal characterization of functional and phenotypic immune signatures in peripheral blood (PB) and cerebrospinal fluid (CSF) of 15 MS patients during switching from long-term NAT to FTY treatment after a defined 8-week washout period within a clinical trial (ToFingo successor study; ClinicalTrials.gov: NCT02325440). Unbiased visualization and analysis of high-dimensional single cell flow-cytometry data revealed that switching resulted in a profound alteration of more than 80% of investigated innate and adaptive immune cell subpopulations in the PB, revealing an unexpectedly broad effect of trafficking drugs on peripheral immune signatures. Longitudinal CSF analysis demonstrated that NAT and FTY both reduced T cell subset counts and proportions in the CSF of MS patients with equal potency; NAT however was superior with regard to sequestering non-T cell populations out of the CSF, including B cells, natural killer cells and inflammatory monocytes, suggesting that disease exacerbation in the context of switching might be driven by non-T cell populations. Finally, correlation of our immunological data with signs of disease exacerbation in this small cohort suggested that both (i) CD49d expression levels under NAT at the time of treatment cessation and (ii) swiftness of FTY-mediated effects on immune cell subsets in the PB together may predict stability during switching later on.

14.
Proc Natl Acad Sci U S A ; 113(41): E6182-E6191, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671636

RESUMO

Molecular mechanisms that determine lesion localization or phenotype variation in multiple sclerosis are mostly unidentified. Although transmigration of activated encephalitogenic T cells across the blood-brain barrier (BBB) is a crucial step in the disease pathogenesis of CNS autoimmunity, the consequences on brain endothelial barrier integrity upon interaction with such T cells and subsequent lesion formation and distribution are largely unknown. We made use of a transgenic spontaneous mouse model of CNS autoimmunity characterized by inflammatory demyelinating lesions confined to optic nerves and spinal cord (OSE mice). Genetic ablation of a single immune-regulatory molecule in this model [i.e., B7-homolog 1 (B7-H1, PD-L1)] not only significantly increased incidence of spontaneous CNS autoimmunity and aggravated disease course, especially in the later stages of disease, but also importantly resulted in encephalitogenic T-cell infiltration and lesion formation in normally unaffected brain regions, such as the cerebrum and cerebellum. Interestingly, B7-H1 ablation on myelin oligodendrocyte glycoprotein-specific CD4+ T cells, but not on antigen-presenting cells, amplified T-cell effector functions, such as IFN-γ and granzyme B production. Therefore, these T cells were rendered more capable of eliciting cell contact-dependent brain endothelial cell dysfunction and increased barrier permeability in an in vitro model of the BBB. Our findings suggest that a single immune-regulatory molecule on T cells can be ultimately responsible for localized BBB breakdown, and thus substantial changes in lesion topography in the context of CNS autoimmunity.


Assuntos
Autoimunidade/genética , Antígeno B7-H1/genética , Encéfalo/imunologia , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Antígeno B7-H1/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/patologia , Encefalomielite Autoimune Experimental , Técnicas de Inativação de Genes , Predisposição Genética para Doença , Camundongos , Camundongos Transgênicos , Mortalidade , Permeabilidade , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA